
1 Basic Concepts of Design

Design methodology emerged in the 1960s as an independent scientific discipline.
This chapter looks to the theory of design methodology as a source of inspiration to
understand the basic concept of design in the most general context. The objectives
of the chapter are:

 To understand the basic characteristics of design processes;

 To understand the elements of designs;

 To understand the factors that affect design processes and outcomes.

The chapter is organised as follows. Section 1.1 gives a brief introduction to
the notion of design. Section 1.2 examines the main characteristics of design
activities in the creative processes of design. Section 1.3 considers designs as plans
to produce man-made artefacts, and identifies the essential elements of all designs.
Finally, section 1.4 presents Mayall’s axioms of design to outline the basic
relationships between various issues involved in every design.

2 Chapter 1. Basic Concepts of Design

1.1 INTRODUCTION

The word ‘design’ as defined in the Longman Dictionary of Contemporary English
(1987) has the following meanings. As a noun, it means:

1. A drawing or pattern showing how something is to be made;

2. The art of making such drawings or patterns;

3. The arrangement of parts in any man-made product, such as a machine
or work of art, as this influences the product’s practical usefulness;

4. A decorative pattern, esp. one that is not repeated;

5. A plan in the mind.

The word design is also used as a verb with the following meanings.

6. To make a drawing or pattern of (something that will be made or built);
develop and draw the plans for;

7. To plan or develop for a certain purpose or use.

As Christopher Jones pointed out in the book Design Methods: Seeds of
Human Futures [1], design methodologists have been moving away from
‘drawings and patterns’ in the notion of design, although it is perhaps still a
common action of designers of all kinds. The literature on design methods began to
appear in the 1950s and 60s. Since then, design methodology has become an
independent discipline of scientific study. The Design Research Society1 publishes
a quarterly journal Design Studies in London by Elsevier Science, which provides
an insight into design issues affecting a wide range of fields of applications for
design techniques. Researchers in the general theory of design have tried to answer
two interrelated fundamental questions about design. The first question is:

What are the essential characteristics of design?

1 The web address of the Design Research Society is: http://www.drs.org.uk/

Software Design Methodology 3

This question relates to understanding when an activity is designing and when
it is not.

The second question is:

What processes are used by designers?

It can be asked in a number of different ways with emphasis on various
aspects of design processes. For example,

Is one process better than another, constituting ‘right’ and ‘wrong’ ways to
design?

Why are some processes favourable over others?

Do different processes lead to different qualities of results?

The last few decades have seen a significant amount of research devoted to
developing design theories with the ultimate aims at clarifying the human ability of
designing in a scientific way, and at the same time, producing the practical
knowledge about design methodology. Such knowledge is believed to be useful
and essential to construct computer aided design systems.

As one of the most complex man-made artefacts, computer software is very
difficult to design. There are many factors that affect designs and many
stakeholders, i.e. people who participate in the design process, play various
different roles in the design processes and influence the design of software. The
questions that researchers in the area of design theory have been searching for
answers to are also questions that computer scientists are looking for answers to in
the context of software development. In fact, software design shares many
characteristics with designs in other fields. As McPhee pointed out [2], much can
be learned from the philosophical and methodological studies of design in general.
This chapter is only a brief review of the basic concepts of design theory.

4 Chapter 1. Basic Concepts of Design

1.2 CHARACTERISTICS OF DESIGN ACTIVITIES

Let’s first have a look at how design theory characterises design activities in the
most general sense.

1.2.1 The input and start point of designs

Many design researchers believe in the aphorism ‘necessity is the mother of
invention’. It is considered as one of the basic characteristics of design that design
can only be undertaken intentionally. Lawson [3] and Dasgupta [4] pointed out that
a real or perceived need forms the basis for the definition of design projects. A
need acts as the initial motivational force that provides the basis for starting design
work. Willem [5, 6] explicitly expressed that the universal feature of design is
simply the intentional devising of a plan or prototype for something new. The need
or intention forms the first basic elements of all designs, i.e. the problem to be
solved. In software design, the need or intention is usually explicitly or implicitly
specified as users’ requirements. Without users’ requirements, there will be no
software design.

1.2.2 The outcome and results of designs

Many designers believe that the output or product of a design is a symbolic
representation of an artefact for implementation. For example, Booker (1964)
regards design as simulating what we want to make (or do) before we make (or do)
it as many times as may be necessary to feel confident in the final result. Dasgupta
[4] expressed that design is essentially ‘the formation of a prescription or model for
an unfinished work in advance of its embodiment’. Design representation serves as
the basis to conceptualise and compare various design decisions. This is very true
in software design. Computer scientists and software engineers learned this lesson
mostly from practical experiences that neglected design stage can only cause
problems at later stages of implementation and so on.

However, the true output of design is more than just a plan or symbolic
representation. MacLean et al. [7] pointed out that, the final output of a design also
include what they call ‘design space’, which is a body of knowledge about the
artefact, its environment, its intended use, and the decisions that went into creating
the design. Designers must consider the representations of this kind of meta-
knowledge about how they arrived at a particular design. Recently such meta-
knowledge about software designs has been collected and studied systematically.

Software Design Methodology 5

Two forms of systematic studies of such knowledge emerged in the literature of
software design. One is about software architecture and the other is design patterns
of object oriented systems. These types of knowledge form the main contents of
this book.

1.2.3 Transformation of data

A basic feature of design that almost all design researchers accept implicitly or
explicitly is the transformational nature of design. For example, Dasgupta [4] noted
that need acts as a seed that design transforms into a form that is eventually used to
guide the implementation of an artefact, plan or process. Simon [8] wrote that
design is the restructuring of a current situation to achieve some preferred
situation. Willem [5, 6] preferred to use the term ‘development’ to describe the
transformation that occurs during design. Page [9] regarded design as an
‘imaginative jump from present facts to future possibilities’.

1.2.4 Generation of new ideas

The requisite of the generation of new ideas during design processes is another
commonly cited characteristic of design. Reswick defined design as a creative
activity – it involves bringing in something new and useful that has not existed
previously. However, creativity remains an elusive subject of design researches
and still beyond science’s firm grasp. The precise manner in which new ideas are
generated still cannot be codified. Some researchers, such as Freeman [10], have
postulated that idea generation is not entirely a haphazard activity. He believed that
two styles of idea generation exist: abstraction and elaboration. Abstraction is used
to make generalisations while elaboration attempts to develop into great detail the
specifics of a design. In fact, these two styles of idea generation play a significant
role in software design methodology.

1.2.5 Problem solving and decision making

Design methodologists tend to characterise design as a type of problem solving or
decision making activity. For example, Asimow defined design as decision
making, in the face of uncertainty, with high penalties for error. For many
scientists and engineers, design invariably involves the application of some sort of
logical analysis on the problem. Others, including Willem, believe that various
design problem solutions are not necessarily connected through logic to their initial
problem state. Design problems are often described as ‘ill-structured’ problems
because of their complexity and the difficulties in determining their associated

6 Chapter 1. Basic Concepts of Design

constraints and requirements. Freeman [10] preferred to use a decision-making
analogy to view design problem solving. He characterised design as a series of
decisions between various design alternatives. Each alternative is determined by
the current state of abstractions, elaborations, operational statements and other
known and unknown factors. Both design-as-problem-solving and design-as-
decision-making views characterise design as goal directed activity and design
process as navigation in a design configuration space.

1.2.6 Satisfying and discovering constraints

An initial need not only determines the problem to be solved, but also imposes the
most basic constraints on the solution. In general, more constraints are often
discovered during the design work itself. Many researchers agree that a major part
of designing involves discovery and satisfaction of constraints on the eventual
form of the design. Such constraints apply both to the designed artefacts and to the
processes and participants involved in the design activity. For example, Mostow
[11] regarded design as an activity with the goal of creating an artefact description
that satisfies constraints derived from functional and performance specifications of
the artefact, limitations of the medium and process by which the artefact is
rendered or produced, and aesthetic criteria on the form of the artefact. For
Alexander [12], design is ‘finding the right physical components of a physical
structure’. In the context of architectural design, Lawson [3] presents design
problems as the assembling of constraints.

1.2.7 Evolution and optimisation in a solution space of diversity

As consequences of the complexity of design problems, diversity presents in
almost all design solutions. Diversity often leads to uncertainty, because the
knowledge that there are many other solutions to the same design problem causes
designers to question the optimality of their initial solution. Thus, they test,
evaluate and modify their design. Designers compensate for weaknesses exposed
during testing and evaluation. They redesign as necessary until they are satisfied
with their design. Therefore, design processes often demonstrate an evolution
process. The evolution of a design is often closely related to the consolidation of
the constraints and requirements applied in a particular design situation. Design
requirements are often imprecise and incomplete. The consequences of a design
decision often cannot be forecast with complete accuracy. Hence, design solutions
evolve in tandem with known problem constraints and requirements. Eventually, a
successful design process includes a convergence of requirements, constraints, and
knowledge about the design and its effects on the implementation environment.

Software Design Methodology 7

1.3 ESSENTIAL ELEMENTS OF DESIGNS

Having studied the characteristics of design processes, now let’s examine the plan
facet of design and identify the basic elements of designs. We will look to the
designs made by a mastermind of designs, Thomas Edison, as our examples.
Figure 1.1 is the one of Edison’s USA patents of electric lights [13].

Notice that, the design presented in the document is not the kind of electric
lights that we are using nowadays. It can be considered as one of Edison’s designs
of electric lights at an early stage of a long evolutionary design process. Although
the design was not presented as a complete engineering design document due to the
nature of the document, it still contained the basic components of all engineering
designs. These components are discussed below.

1.3.1 Statement of design problem and objectives

The objective of a design is the problem to be solved and the goal to achieve. For
example, in Edison’s patent, it was stated that the design was about electric lights.

Design problems are often described as ill-structured [14] or ‘wicked’ [15] in
contrast to well-structured or well defined problems such as chess-playing or
crossword puzzles. Well defined problems have a clear goal, often one correct
answer, and specific rules or known ways of proceeding that will generate an
answer. The characteristics of ill-structured or wicked problems can be
summarised as follows.

(a) No definitive formulation of the problem.

When a design problem is initially set, the goals are usually vague and many
constraints and criteria are unknown. The context of the problem is often complex
and poorly understood. In the example of Edison’s design of electric lights, the
goal of designing an electric light was obviously vague and the context was
unclear. Understanding such a design problem is bound up with the ideas that we
may have about solving it. This may lead to certain temporal formulations of the
problem. For example, in the course of problem solving, Edison made a temporal
formulation of the problem by assuming that an electric light was an apparatus that
produces electric light ‘by coil or strip of platinum or other metal that requires a
high temperature to melt, the electric current rendering the same incandescent’.
This led to the problem that ‘there is danger of the metal melting and destroying

8 Chapter 1. Basic Concepts of Design

Software Design Methodology 9

Figure 1.1 One of Edison’s designs of electric lights

10 Chapter 1. Basic Concepts of Design

the apparatus, and breaking the continuity of the circuit’. However, as often occurs
in all design processes, temporal formulations of design problems are unstable and
can change as more information becomes available. Notice that, Edison’s design of
electric light presented in this patent is not that commonly used nowadays.
Moreover, problem formulations are commonly inconsistent. Many conflicts and
inconsistency must be resolved in the solution.

(b) No definitive solution to the problem.

Solutions to a design problem are often not true or false, but good or bad. Different
solutions can be equally valid responses to the initial problem. There is often no
objective criterion for the evaluation of a solution. However, solutions are assessed
as good or bad, appropriate or inappropriate. For example, can we say Edison’s
design of electric lights presented in this patent is correct or incorrect? Instead, we
might be able to say that this design is not as good as the design presented in
Figure 1.3, which is now commonly in everyday use. Moreover, there is often no
best solution. Essentially, this implies that there is a lack of any criteria that can be
used as a ‘stopping rule’ to establish when the solution to a problem has been
found such that any further work will not be able to improve upon it. No wonder
why so many different types of electric lights have be designed, manufactured,
marketed and used nowadays since Edison’s invention.

(c) No definitive way of solving the problem.

There are no proven methods and rules that can definitely generate a solution to a
design problem. Even a fairly precise problem statement gives no indication what a
solution must be. Yet, solutions and problems influence each other in a ‘wicked’
way. A wicked problem can often be considered to be a symptom of another
problem. Resolving a discrepancy or inconsistency in a design may pose another
problem in its turn. The formulation of a problem often depends on the way of
solving it. Many assumptions about the problem and specific areas of uncertainty
can be exposed only by proposing solution concepts. Many constraints and criteria
emerge as a result of evaluating solution proposals. Sub-solutions of the design
problem can be found to be inter-connected with each other in ways that form a
pernicious circular structure to the problem. For example, a sub-solution that
resolves a particular sub-problem may create irreconcilable conflict with other sub-
problems.

The ill-structured and wicked problem of design is the main reason why
design is difficult. In Chapter 3, we will have a closer look at the particular reasons
why software design is difficult.

Software Design Methodology 11

1.3.2 Constraints

The objectives of a design often have to be achieved within certain constraints.
These constraints define the solution space of the design problem. For the electric
light problem, the most significant constraints are that the power must be
electricity and it must be able to provide light continuously for a practically
acceptable length of time. There are also other physical constraints, for example,
the fusing-point of the metal used for the coil. Some of the constraints are
explicitly mentioned in the patent document, and many others left as implicit.
Some constraints are discovered and/or introduced by the designer during the
course of design. In general, constraints can be classified along the following three
dimensions according to Lawson [3].

(a) The generator of the constraint.

Constraints can be generated by the eventual users of the artefact, by the designers
themselves, by legislators (e.g. safety related constraints), and by the design clients
(i.e. the people who have commissioned or sponsored the design and who may or
may not be eventual users of the artefact).

(b) The domain of the constraint.

According to Lawson, constraints fall into two domains, external and internal.
External constraints are imposed by the factors not under the designer’s control,
while internal constraints give the designer at least some ability to control them.

(c) The function of the constraint.

Lawson’s third dimension, constraint function, relates to the rationales behind the
imposition of each of the constraints. Constraints can exist for reasons relating to
symbolism and social norms, formal intentions of the designer, practical
implications brought by the implementation technologies, and ‘radical’ reasons that
deal with the primary purpose of the artefact.

1.3.3 Description of product

The main result of the design activity must be presented in the form of a
description of the designed product. In this example, the product is described by
the diagrams and in the text as well. The product of Edison’s patent is an automatic
thermal regulator for the electric current that prevents the melting and destroying
of the apparatus. In addition to the description of the structure of the apparatus,

12 Chapter 1. Basic Concepts of Design

there are also descriptions of the materials used to make the various parts of the
apparatus and how the apparatus works.

Notice that Edison used two diagrams to indicate two different states of the
apparatus. In more complicated products, engineers often find that it is too
complicated to use only one diagram to describe the structure and states of a
system. Therefore, a number of different diagrams or drawings may be used to give
details of various parts of the system. Sometimes, different notations may be used
to specify different aspects of the system. This is a common practice in all
engineering designs. For example, Leonardo Da Vinci, a great artist and inventor
in the 15th to 16th century, often produced a number of drawings for one design of
machinery. As shown in Figure 1.2a, Leonardo presented his design of a crossbow
by a drawing that shows its overall structure and several drawings of the critical
parts of the crossbow. Similarly, Figure 1.2b is a design of a wing as a part of
Leonardo’s flying machine dated to between 1486 and 1490. On the lower right
corner of the drawing shows how the wings are to be connected and operated. The
main part of the drawing gives more details of the design of the wing itself. In
software engineering, software designs are also represented in a number of
interrelated diagrams and with text explanations. We will see some examples later
in the book.

Representing a complicated design in a number of different levels of
abstraction and with different details is, in fact, an important principle of the
representation of engineering designs. It is recognised in software engineering as
structural or hierarchical representation.

Figure 1.2a Leonardo Da Vinci’s design of crossbow

Software Design Methodology 13

Figure 1.2b Leonardo Da Vinci’s design of a flying machine

Using a number of diagrams to represent a complicated design is also related
to another important principle of design, which is called multiple views in software
engineering. Because the design and production of a system may involve many
people of different backgrounds who play different roles in the course, the design
should be presented to each person only with the information that they are
concerned with and in the way that is suitable for their background and is
convenient for them to work on. Therefore, different notations should be used to
describe different aspects of a design. Such descriptions of one system in various
notations form a set of models of the system. Each model presents a view of the
system. These views must be consistent with each other.

1.3.4 Rationale

Engineering designs must be based on scientific principles and technical
information. The rationale underlying a design justifies the design by applying
such scientific and technological knowledge to show how the design problem is
actually solved, or at least why we can predict that the design problem will be
solved by the design. Edison gave a very clear expression of the rationale
underlying this design. In particular, the automatic thermal regulator is deployed to
keep the heat ‘at all times below the melting-point of the incandescent substance’.

Since the document is only a partial result of an early stage of Edison’s design
of electric lights, there are a few important elements missing from the document.

14 Chapter 1. Basic Concepts of Design

These elements were presented in Edison’s other patent documents. For example,
the following elements can be found.

1.3.5 Plan of production

As an engineering design, we not only require to know whether a design can solve
a problem, but also we must know the design is practical. One of the most
fundamental questions related to the practicality of a design is how to bring about
the design. In this case, it is the problem of the manufacture of light bulbs. Edison
addressed this problem and obtained a number of his patents, which include the
manufacture of Carbon filament, etc. Figure 1.3 shows the diagram in a patent by
Edison in 1889 about how to manufacture electric lights2 [16]. Sometimes, how to
bring about a design is a common knowledge when the product is clearly
described. However, engineers often found it is one of the most challenging
problems of design.

Figure 1.3 Manufacture of electric lights as patented by Edison

2 Notice that the electric light is not the same as that in Figure 1.1.

Software Design Methodology 15

1.3.6 Description of usage

There are always certain conditions under which a product can be used safely and
effectively so that the objectives of the design can be achieved. How a product is to
be used is sometimes not a trivial problem. Instead, it can be as hard as, sometimes
even more difficult, to solve than the problem of designing the product itself. It
may appear in the form of designing a system of which the product is only a part.
Figure 1.4 shows the system of electric light as designed by Edison in one of his
patents [17].

These elements of designs that we found in Edison’s designs of electric lights
appear in all designs including the designs of software systems although they may
appear in different forms.

Figure 1.4 System of electric lights as patented by Edison

16 Chapter 1. Basic Concepts of Design

1.4 THE FACTORS THAT AFFECT DESIGNS

In search of the factors that affect design processes and outcomes and the analysis
of their interrelationships, Mayall proposed a set of axioms as the principles of
designs [18]. Although different types of product may have different features and
their design processes may involve different domain-specific activities, Mayall’s
axioms present a set of general laws of design that characterise the nature of
design. The following looks at these general laws and explains them in the context
of software design.

(1) The Principle of Totality: All design requirements are always interrelated and
must always be treated as such throughout a design task.

This axiom states that design requirements are the most important factor that
affects the whole design process. Moreover, the elements of design requirements
are interrelated and should be treated as a whole during design.

This axiom is very much true in software design. The relationships between
software requirements vary significantly. Sometimes, users’ requirements conflict
one to another. It has been widely recognised that conflict resolution and
requirements prioritisation must be considered as an essential part of requirements
analysis in software development. The axiom also tells us that design decisions
must be made on the basis of a deep understanding of the interrelationships
between the requirements.

(2) The Principle of Time: The features and characteristics of all products change
as time passes.

This axiom states that time is an important factor that affects designs. This
nature of design has been well demonstrated in software designs. For example, 20
years ago, a program that interacts with the user through command line
input/output may be considered as user-friendly, if it gives prompts for user’s input
and displays outputs in the form of dialogues. Now, with the wide spread of
graphic user interfaces, such computer-human interaction can hardly be considered
as user-friendly. A program that uses 10 mega-bites of memory space would be
considered as requiring too much resource and impractical 20 years ago, but
nowadays a student dissertation project would normally take more than that size of
memory space. Therefore, a design cannot be evaluated without taking into
consideration of the times when the design was made and when the evaluation was
made.

Software Design Methodology 17

(3) The Principle of Value: The characteristics of all products have different
relative values depending upon the different circumstances and times in which
they may be used.

This axiom states that the relative value of a product is an important issue that
must be taken into consideration in the design. It further states that the value
depends on the circumstances and time when the product is used. It is not fixed. A
good software design made ten years ago is probably out of date and less
satisfactory now because users’ requirements have changed and the hardware and
software platforms to implement and execute the software have also changed.
Features that were considered desirable years ago may have become less important,
unnecessary even harmful, while new features become the most important.
Different users may value the same product differently. Even the same user may
value the same product differently upon different circumstances such as in
different use purposes. Designers should be aware of the user types and their
purposes of use and to apply this knowledge in the design of the software.
Adaptability for a wide range of user types should be considered.

(4) The Principle of Resources: The design, manufacture and life of all products
and systems depend upon the materials, tools and skills upon which we can
call.

This axiom states that the resources that are available for the design,
manufacture and operation of the product are important factors that design must
take into consideration. Such resources include tools, skills and materials. Software
development, operation and maintenance demand a large amount of resources,
which include the following types: (a) development tools, such as programming
languages and compilers, CASE tools including configuration management and
testing tools, etc. (b) run time support systems, including software and hardware
platforms, other system software such as database management systems, network
protocols, etc. (c) human resource, which is perhaps the most important among all
resources of software development, (d) application domain-specific tools and
equipment, especially in the development of embedded systems.

(5) The Principle of Synthesis: All features of a product must combine to satisfy
all the characteristics we expect it to possess with an acceptable relative
importance for as long as we wish, bearing in mind the resources available to
make and use it.

This axiom states that features, or functions, of a product constitute a factor
that affects design as the objective of design. They combine together to satisfy the
requirements. In software engineering, a good design must take all functional and
non-functional requirements and their relationships into account. In software
design practice, it is almost inevitable to make trade-offs between desirable

18 Chapter 1. Basic Concepts of Design

features and functions. Such trade-offs must be based on a deep understanding of
the users’ requirements as a whole and bear in mind the constraints on the resource
available. In the next chapter, we will examine in detail the quality attributes of
software systems and software development processes. We will see that certain
quality attributes may affect other quality attributes in a negative way.

(6) The Principle of Iteration: Design requires processes of evaluation that begin
with the first intentions to explore the need for a product or system. These
processes continue throughout all subsequent design and development stages
to the user himself, whose reactions will often cause the iterative process to
continue with a new product or system.

This principle states the importance of design process. It emphasises the
importance of evaluation of design and users’ feedback, which is no exception to
software design. In fact, being perhaps the most complicated artefacts that human
beings have ever designed and built, software systems are difficult to design,
evaluate and validate. Software development practices indicate that errors made
during design stage are difficult even impossible to rectify at later stages during
implementation and maintenance. As a consequence of evaluation and validation,
also for many other reasons, designs have to be changed to correct errors and to
improve quality. Such changes often need to go through many loops of evaluation-
modification iteration to reach a satisfactory status.

(7) The Principle of Change: Design is a process of change, an activity
undertaken not only to meet changing circumstance, but also to bring about
changes to those circumstances by the nature of the product it creates.

This axiom states that the consequence of design is to bring about changes.
The application of computers has significantly changed the way we work and live,
and brought the human civilisation to the so-called information age. Information
systems can be classified into three types according to the changes that they bring
about. An information system is automational, if it automates certain activities that
were originally carried out by human beings. It is called informative, if it generates
information that was not available before. It is called transformational, if it
changes the way that business or certain tasks were carried out within the
organisation. The design of a software system must take into consideration about
how the software is to be used. We need to consider not only how the design fits
into the way that we are working and living, but also how it changes the way that
we will work and live as the consequence of using the system. Software designers
must be aware of their responsibility. On the other hand, the changed world raises
new requirements for software designers. This requires new designs of software
systems as well as modifications on existing systems. An important quality issue of

Software Design Methodology 19

software designs is modifiability, which means whether it is easy to make
modifications.

(8) The Principle of Relationships: Design work cannot be undertaken effectively
without established working relationships with all those activities concerned
with the conception, manufacture and marketing of products and, importantly,
with the prospective user, together with all the services he may call upon to
assist his judgement and protect his interests.

Of course, the people involved in the design process are a very important
factor that affects design. What’s important is not only the individuals involved in
design, but also the working relationships between them. Software design
methodologies have also identified various stakeholders who may contribute to
software design in various ways. Typically, in addition to software designers, other
stakeholders involved in software design include:

 Customers: who purchase the software

 Users: who use the software and are responsible for executing the software

 System administrator: who is responsible for managing the data repositories
used by the systems

 Project managers: who manage the software development process

 Developers: who are responsible for developing and/or modifying the runtime
functions of the system. Developers can be further divided into a number of
sub-types of stakeholders, such as requirements analysts, designers,
programmers, testers, etc.

 Requirements analysts: who analyse, specify and approve the requirements of
the system which is the basis of design

 Designers: who design the software system at architectural level or at detail
level. In particular, designers of software architectures are often call software
architects

 Programmers: who implement the software according to the design

 Testers: who review and/or inspect various development documents and test
the software product after implementation

 Auditors: who audit the development activity

20 Chapter 1. Basic Concepts of Design

 Support technicians: who provide technical supports, such as providing and
maintaining software development and design tools.

(9) The Principle of Competence: Design competence is the ability to create a
synthesis of features that achieves all desired characteristics in terms of their
required life and relative value, using available effective information about
this synthesis to those who will turn it into products or systems.

This axiom states that an important factor that affects design is the
competence of the designer. In the context of software design, this principle reads
that design competence is the ability to design a software system that satisfies all
requirements including functional and non-functional requirements and to
effectively document the design so that the software can be implemented according
to the design.

(10) The Principle of Service: Design must satisfy everybody, and not just those
for whom its products are directly intended.

This axiom states that service must also be considered in design. In the
context of software design, a good design should not only satisfy the requirements
of the intended usage of the system, but should also satisfy other stakeholders. For
example, it must be easy to maintain, easy to reuse, easy to transport to other
operation environments and to be inter-operable to other software systems, etc.

Software Design Methodology 21

SUMMARY

There are two facets of the concept of design. Firstly, a design is a plan to bring
about a man-made product. Such a plan must achieve a prescribed goal and satisfy
certain constraints. Secondly, it is a process of the creative development of such a
plan. During this process, the designer must use related scientific principles,
technical information and imagination to discover constraints and to solve the
design problem. Therefore, we can define engineering design as follows.

Engineering design is the use of scientific principles and technical
information in the creative development of a plan to bring about a man-made
product to achieve a prescribed goal with certain specified constraints. The
consequence of the implementation of the design will bring changes to the
environment, while the environment of the designer influences the design itself.
Software design is a branch of engineering design where the product to bring about
is software.

Figure 1.5 Basic concepts of design

As depicted in Figure 1.5, design activities have the following characteristics.
Design starts with a need and requires intention. It results in a scheme for
implementing an artefact. It involves transformations and the generation of new
ideas is fundamental to all designs. Design is goal directed problem solving and
decision making. It must satisfy the constraints and the requirements. The design

Scheme for implementing
an artefact

 Objectives
 Description of product
 Rationales
 Plan of production
 Usage

A need or
 The problem to be

solved
Constraints on the

solution

Design Process

Transformation
Development

Creation

Problem solving
Decision making

Constraint satisfaction
Constraint discovery

Navigation in
design space

Diversity
Evolution

22 Chapter 1. Basic Concepts of Design

process is also a constraint discovery process. Design is to achieve optimality in a
solution space of diversity; hence, it is often an evolutionary process.

An engineering design should contain at least five basic elements: (a) the
objectives of the design, (b) a description of the designed product, (c) the rationale
of the design, (d) a plan of the production, and finally, (e) the designated usage of
the product.

There are a number of factors that effect design processes and their outcomes.
These factors include (a) the requirements to be satisfied by the design, (b) the time
design was made and evaluated, (c) the value of the product, (d) the resource
available to the design, manufacture and use of the product, (e) the features, or
functions, of the product, (f) the process of design, (g) the consequence of design,
i.e. the change to be brought about, (h) the people involved in the design process
and their working relationships, (i) the competence of the designer, (j) the service
of the designed products. These factors interrelate with each other as stated in the
axioms of design proposed by Mayall.

FURTHER READING

There are a number of books on design methodology, most of which illustrate the
theory with examples of designs of architectures, physical articles and machinery.
For example, Jones’ book Design Methods: Seeds of Human Future [1] is one of
the best-known. The book Developments of Design Methodology [19] edited by
Cross and published in 1984 collected a number of papers on design methodology
that represent the milestones in the development of design methodology into an
independent scientific discipline. Many of the authors of the papers collected in the
book have been referred to in this chapter. The current state of art in the research
on design methodology is well represented by the publications in the Design
Research Society’s quarterly journal Design Studies, which is published by
Elsevier Science and Technology in London. More details about the journal
including table of contents in each issue can be found at the website of the journal
at the URL: http://www.drs.org.uk/. The research on software design has evolved
rapidly over the past few decades. Most of the earliest work on the subject is
collected in the Tutorial on Software Design Techniques [20] edited by Freeman
and Wasserman and published by IEEE in 1980. Since then, significant progress
has been made.

Software Design Methodology 23

EXERCISES

(1–1) Discuss whether an activity can be considered as a design activity if it has no
fixed goals or objectives to achieve.

(1–2) Discuss why the output of design is a symbolic representation of an artefact
for implementation rather than a real product.

(1–3) Discuss whether code in a high level programming language is an
appropriate form to represent the results of software design.

(1–4) Regarding design as a process of transformation, discuss what is transformed
in software design.

(1–5) Discuss why design is a creative activity.

(1–6) Discuss why design problems are often said to be ill-structured. Give an
example of an ill-structured design problem.

(1–7) Discuss why decision making in design process often faces uncertainty.

(1–8) Consider the following constraints imposed on the design of a software
system. Apply Lawson’s theory of constraints to analyse these constraints
and find out the three dimensions of each constraint.

(a) The software is to be executed on a PDA (Personal Data Assistance);

(b) The output of the software must be displayed on the screen of the size
3″×2″;

(c) The software should be easy to operate through a small keypad that has
character buttons and some functional buttons;

(d) The software can only be used if the user subscribes to a specific online
service of the client’s company;

(e) The software will be implemented using the C language.

(1–9) Discuss why testing and evaluation of designs are important.

(1–10) Assume that you want to make a bookshelf to put in your room.

24 Chapter 1. Basic Concepts of Design

(i) Make a design of the bookshelf, and record the activities that you
perform during the design process.

(ii) Answer the following questions.

(a) What are the objectives of the design? How do they interrelate to each
other?

(b) What are the constraints on the design at the beginning? Do you
discover any constraints during the course of design?

(c) What are the stakeholders involved in the design? (Hint: a person
involved in a design may play different roles. In such cases, the
person should be considered as different stakeholders.)

(d) What is the designed product? How do you describe it?

(e) What is your plan of making the bookshelf? How do you describe the
plan?

(f) What are the design decisions you made during the design and what
are your rationales of the specific design?

(g) What are the normal use conditions of the bookshelf? Are the
conditions the same as the condition in which the bookshelf will be
used? What are the consequences if any of the conditions is not
satisfied?

(h) What are the changes that the bookshelf will bring to you?

(1–11) Design a software system and present your design in a document.

(i) Does your document contain all the elements discussed in section 1.3?

(ii) Replace the term ‘bookshelf’ in the questions (a)–(h) of exercise (1–10)
with the software that you design. Then, find their answers from the
design document.

(ii) Discuss the consequences if one element is missing from the document.

(1–12) Give an example of a software system that was considered as a good
design several years ago, but now it is considered as out of date. Discuss the
reasons why it happened by referring to Mayall’s axioms.

Software Design Methodology 25

(1–13) Give an example of a software system that was considered as a bad design
several years ago, but now has become widely used and considered as a
good design. Discuss the reasons why it happened by referring to Mayall’s
axioms.

(1–14) Give an example of information system for each type of automational,
informative, and transformational information systems.

(1–15) A hospital would like to develop an online patient information system.
Discuss the stakeholders who might be involved in the development of the
system.

(1–16) Use the record of the design process that you made in answering question
(1–10) to examine and explain Mayall’s axiom of designs.

REFERENCES

1 Jones, C. J., Design Methods: Seeds of Human Futures, John Wiley & Sons,

1970.
2 McPhee, K. , Design Theory and Software Design, Technical Report TR 96-

26, October 1996, Department of Computing Science, The University of
Alberta, Canada, 1996.

3 Lawson, B., How Designers Think, The Architectural Press Ltd., London,
1980.

4 Dasgupta, S. , The structure of design processes, in Advances in Computers,
Yovits, M. C., Ed., Academic Press, 1989, pp1–67.

5 Willem, R. A. , Design and science, Design Studies, Vol. 11, No. 1, pp43–47,
1990.

6 Willem, R. A. , Varieties of design, Design Studies, Vol. 12, No. 3, pp132–
136, 1991.

7 MacLean, A. , Bellotti, V. and Young, R., What rationale is there in design?,
in Human-Computer Interaction – INTERACT’90, 1990, pp207–212.

8 Simon, H. A. , The structure of ill-structured problems, Artificial Intelligence,
Vol. 4, pp181–200, 1973.

9 Building for People, 1965 Conference Report, UK Ministry of Public
Building and Works, London, 1965.

10 Freeman, P. , The nature of design, in Tutorial on Software Design
Techniques, Freeman, P. and Wasserman, A. I. Eds, IEEE, 1980, pp46–53.

11 Mostow, J. , Toward better models of design process, AI Magazine, Vol. 6,
No. 1, pp44–57, Spring, 1985.

26 Chapter 1. Basic Concepts of Design

12 Alexander, C., Notes on the Synthesis of Form, Harvard University Press,

Cambridge, Mass., 1964.
13 Edison, T. A., Improvement in electric lights, United States Patent Office, No.

214,636, April 22, 1879.
14 Simon, H. A., The structure of ill-structured problems, in Developments of

Design Methodology, Cross, N. (Ed.), pp145–166, Wiley, 1984.
15 Rittel, H. J. and Webber, M. M., Planning problems are wicked problems, in

Developments in Design Methodology, Cross, N. (ed.), pp135–144, Wiley,
1984.

16 Edison, T. A., Manufacture of incandescent electric lights, United States
Patent Office, No. 411,019, Sept. 17, 1889.

17 Edison, T. A., System of electric lighting, United States Patent Office, No.
446,666, Feb. 17, 1891.

18 Mayall, W. H., Principles in Design, Design Council, London, 1979.
19 Cross, N. (Ed.), Developments of Design Methodology, Wiley, 1984.
20 Freeman, P. and Wasserman, A. I. (Eds.), Tutorial on Software Design

Techniques, IEEE, 1980.

